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Genome-scale in silico metabolic networks of Escherichia coli have been reconstructed. By using a constraint-
based in silico model of a reconstructed network, the range of phenotypes exhibited by E. coli under different
growth conditions can be computed, and optimal growth phenotypes can be predicted. We hypothesized that
the end point of adaptive evolution of E. coli could be accurately described a priori by our in silico model since
adaptive evolution should lead to an optimal phenotype. Adaptive evolution of E. coli during prolonged
exponential growth was performed with M9 minimal medium supplemented with 2 g of �-ketoglutarate per
liter, 2 g of lactate per liter, or 2 g of pyruvate per liter at both 30 and 37°C, which produced seven distinct
strains. The growth rates, substrate uptake rates, oxygen uptake rates, by-product secretion patterns, and
growth rates on alternative substrates were measured for each strain as a function of evolutionary time. Three
major conclusions were drawn from the experimental results. First, adaptive evolution leads to a phenotype
characterized by maximized growth rates that may not correspond to the highest biomass yield. Second,
metabolic phenotypes resulting from adaptive evolution can be described and predicted computationally.
Third, adaptive evolution on a single substrate leads to changes in growth characteristics on other substrates
that could signify parallel or opposing growth objectives. Together, the results show that genome-scale in silico
metabolic models can describe the end point of adaptive evolution a priori and can be used to gain insight into
the adaptive evolutionary process for E. coli.

Biological systems are fundamentally complex, and thus a
systems approach is necessary to account for the diversity of
interactions that can occur among the myriad of molecular
components that comprise living cells (1, 5, 14). The use of
genome-scale metabolic reconstructions of an organism may
prove to be a valuable tool in attempts to account for biological
complexity and to elucidate the genotype-phenotype relation-
ship. The annotation of full microbial genome sequences (2, 7)
has enabled reconstruction of whole-cell metabolic networks
(5, 15, 19, 29). By using these reconstructed networks, detailed
analyses of specific biological functions and system properties
have been performed (11, 12, 21, 25, 27, 31). In addition,
numerous different in silico approaches have been developed
and are available to analyze the properties of metabolic net-
works (11, 16, 24, 28, 34, 36). While the rationales underlying
the various methods are becoming widely accepted, there still
has been limited prospective experimental verification of ge-
nome-scale in silico models with regard to their abilities to
interpret and predict complex biological processes, such as
adaptive evolution.

In several studies the workers have productively combined
computational and experimental approaches (4, 17, 32, 33). In
these studies, the in silico models were constructed and used to
analyze specific metabolic subsystems accounting for a rela-
tively small number of metabolic reactions. More recently, a
constraint-based in silico model of a genome-scale metabolic
reconstruction of Escherichia coli has been used to describe the

metabolic phenotypes for growth on several substrates and the
end point of adaptive evolution for growth on glycerol (8, 13).

In this study we elaborated on the conclusion reached pre-
viously that adaptive evolution drives E. coli to a predicted
optimal growth phenotype (13), and we evaluated the overall
predictive capabilities of the genome-scale in silico model for
adaptive evolution of E. coli by examining adaptive evolution
on three different substrates, lactate, pyruvate, and �-ketoglu-
tarate. Additional phenotypic characterization of the evolved
strains generated in this study also allowed us to better define
some of the underlying biological changes that occurred in
these strains during laboratory adaptive evolution.

MATERIALS AND METHODS

Computational methods. We a developed a genome-scale in silico model of
E. coli K-12 including 906 genes and 1,327 reactions based upon the constraint-
based approach utilizing genomic annotation, biochemical stoichiometry, phys-
iological data, and thermodynamics extending the model described by Edwards
and Palsson (9). For this study, phenotype phase plane (PhPP) analysis (Fig. 1)
was applied to our model, whose details have been described previously (10, 26).
Briefly, the PhPP is a representation of the constrained solution space (allowable
phenotypes for growth in a given environment) for a given organism and can be
used to visualize optimal metabolic phenotypes of the organism. In two dimen-
sions, the substrate uptake rate (SUR) and oxygen uptake rate (OUR) comprise
the two axes (x and y, respectively). The cellular growth rate (GR) or any other
objective of interest can be added as a dependent, computed variable and can be
plotted over the PhPP to obtain a three-dimensional surface.

The PhPP can be used to represent all the optimal phenotypes that an organ-
ism can exhibit for anaerobic and aerobic growth on single carbon substrates. In
the PhPP, a computationally determined line of optimality (LO) is found that
represents the predicted optimal phenotype for maximizing biomass yield.
Growth on the LO thus represents the best possible fully aerobic conversion of
the carbon substrate into biomass. Other lines on the PhPP delineate regions of
similar metabolic phenotypes, as shown in Fig. 1A (regions 1 to 5). Higher GRs
are sometimes possible due to partial anaerobic metabolism of the substrate in
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addition to the amount that can be fully aerobically metabolized (Fig. 1B). Prior
to any experimental work, a PhPP and the LO can be calculated for a particular
substrate, and the computational prediction can be compared with subsequent
experimental results. Thus, a strain can then be subjected to adaptive evolution,
and the changes in growth phenotype properties can be traced in the PhPP (13).

In addition to generating PhPPs to predict and interpret the outcome of the
adaptive evolution process, the in silico model was used to calculate and analyze
theoretical GRs, uptake rates, and metabolic flux distributions for the results
obtained experimentally. Two different parameters, optimal yield and optimal
growth, were calculated for the end point phenotype of each evolved strain. By
constraining only the OUR, the computational model was allowed to determine
optimal values for the SUR and GR to obtain the optimal yield. For the optimal
growth calculation, both uptake rates (OUR and SUR) were constrained to the
experimental values at the end point of evolution, resulting in a computed GR.
For every optimal growth phenotype calculated, a predicted metabolic flux dis-
tribution was also determined, which allowed comparisons to be made between
growth on the evolutionary carbon source and growth on alternative carbon
sources.

Experimental methods. E. coli K-12 wild-type strain MG1655, obtained from
the American Type Culture Collection (Rockville, Md.), was used for all exper-
iments. We started with fresh cultures, and E. coli was grown on lactate, pyru-
vate, or �-ketoglutarate at 30 and 37°C and subsequently examined to measure
growth and uptake rates, analyzed for by-product secretion, and monitored for
growth on alternative substrates. The two temperatures selected for each type of
culture conditions represent the optimal (37°C) and suboptimal (30°C) temper-
atures for growth of E. coli. Seven distinct evolved strains were generated in the
following conditions: growth on lactate at 37°C (strain L1), growth on lactate at
30°C (strains L2 and L3), growth on pyruvate at 37°C (strain P1), growth on
pyruvate at 30°C (strain P2), growth on �-ketoglutarate at 37°C (strain A1), and
growth on �-ketoglutarate at 30°C (strain A2).

Evolution of E. coli was conducted in 250 ml of M9 minimal medium supple-
mented with 2 g of a carbon source per liter in Erlenmeyer flasks by using
magnetic stir bars for aeration (13). The cells were grown overnight and allowed
to reach the mid-exponential growth phase (A600, � 0.5) before they were diluted
by passage in fresh medium. The level of dilution at each passage was adjusted
daily to account for changes in the GR. Typically, following dilution the A600 was
�2.4 � 10�6. This process of batch growth and serial passage was conducted for
45 to 75 days for the various cultures until a stable GR was achieved. This serial
passage maintained a state of prolonged exponential growth so that each culture
never entered the stationary phase. Throughout the course of evolution, samples
of each evolved strain were flash frozen by using liquid nitrogen and stored in a
freezer at �80°C.

The evolving cultures were phenotypically characterized at regular time inter-
vals over the course of adaptive evolution to quantitatively determine the phe-
notypic changes during the adaptive evolutionary process. For each time point
examined, precultures were grown overnight and used to inoculate fresh medium
for a batch culture. The GR, SUR, and OUR were measured throughout expo-
nential growth for each culture (13). A biomass correlation was also determined
for each time point, and medium samples were taken throughout exponential
growth and into the stationary phase to monitor metabolic by-product secretion.
The GRs were determined by measuring the optical densities of the cultures with
a spectrophotometer (A600 and A420). The SUR was determined by monitoring
the depletion of the carbon source in filtered medium samples over time by using
UV detection by high-performance liquid chromatography (HPLC) or an enzy-
matic assay. The OUR was determined by measuring dissolved oxygen depletion
with a respirometer by using a polarographic dissolved oxygen probe. The bio-
mass correlation was determined by measuring the optical density of a culture
and filtering a set volume of the culture onto a preweighed filter which was
weighed after it was dried to a constant weight. The by-product secretion pat-
terns were determined by UV detection by HPLC, and samples were taken
regularly throughout batch culture testing. All phenotype testing was performed
more than once for each time point of evolution tested.

Growth on alternative carbon sources was evaluated by using the Bioscreen C
system (Thermo Labsystems, Franklin, Mass.). This system measured the optical
densities of up to 200 cultures (by using two 100-well plates) for each experiment
in a temperature-controlled environment. For each experiment conducted with
the Bioscreen C system, precultures were grown overnight and allowed to reach
the mid-exponential growth phase (A600, � 0.5). Portions (2.5 to 15 �l) of these
cultures were used to inoculate the multiwell Bioscreen C plates containing 300
�l of medium, which yielded initial A600 of between 0.06 and 0.07. Each exper-
imental run included a blank well containing medium as a negative control and
a well with wild-type cells as a positive control. Growth on 10 different carbon
sources (acetate, �-ketoglutarate, citrate, glucose, glycerol, lactate, malate, pyru-

vate, ribose, and succinate) was tested. The plates were incubated and monitored
with the Bioscreen C system for 24 h; measurements were taken every 15 min,
and there was continuous shaking between measurements. Each evolved strain
was tested with the Bioscreen C system at the temperature at which it was
evolved. GRs were averaged from replicate cultures and normalized to the
wild-type GR.

RESULTS

Phenotype assessment. Seven distinct evolved strains were
generated during this study by using E. coli K-12 wild-type
strain MG1655 as the parent. The results obtained from phe-
notype characterizations of these strains are described below.

(i) Lactate. When E. coli K-12 wild-type strain MG1655 was
grown on 2 g of lactate per liter, we found that at 30°C it
operated in region 2 of the lactate PhPP (Fig. 2A and B), which
is a region characterized by partial anaerobic growth and ace-
tate secretion. At 37°C, the wild-type cells functioned in region
1 of the lactate PhPP, a region exhibiting metabolic futile
cycles that leads to suboptimal GRs (9). One culture was
evolved and examined on lactate at 37°C (strain L1), and two
cultures were evolved and examined on lactate at 30°C (strains
L2 and L3). At 37°C, the L1 culture was evolved for 45 days, or
approximately 870 generations, and it exhibited an 80% in-
crease in GR, from 0.40 to 0.72 h�1. We found that by day 20
of evolution the culture was operating along the LO. The cells
continued to operate along the LO from days 20 to 30 of
evolution, exhibiting increases in GR, SUR, and OUR. By day
45, the cells had drifted slightly off the LO into region 2 to
achieve a higher GR.

The two cultures evolved on lactate at 30°C (strains L2 and
L3) had two distinct evolutionary trajectories, but they exhib-
ited similar growth phenotypes at the end of evolution on day
60 (approximately 950 generations), as shown in Fig. 2A and B.
L2 showed a 147% increase in GR from 0.23 to 0.56 h�1, and
L3 showed a 132% increase in GR from 0.23 to 0.53 h�1. At
the start of evolution, the L2 strain showed large increases in
SUR and only a slight increase in OUR. The increased SUR
moved the cells away from the LO by day 20 of evolution. After
day 20, the SUR of L2 decreased, bringing it to operation on
the LO (Fig. 2A, inset). In contrast to the evolutionary trajec-
tory of strain L2, strain L3 showed an increase in OUR at the
beginning of evolution with almost no change in SUR. By day
10 of evolution, strain L3 operated close to the LO and re-
mained along the LO throughout the remainder of evolution.
L2 and L3 had almost identical growth phenotypes at the end
of evolution.

The by-product secretion patterns measured by UV detec-
tion with an HPLC for strains L2 and L3 also qualitatively
reflected the observed phenotypic differences between the two
strains. At day 20, when the two strains were most divergent
phenotypically, the by-product secretion patterns were dis-
tinctly different, with strain L3 secreting an unidentified by-
product that strain L2 did not secrete. After the end of evolu-
tion, when the two strains were phenotypically similar, the
by-product secretion patterns were also similar (data not
shown).

(ii) Pyruvate. Evolution of E. coli K-12 wild-type strain
MG1655 on pyruvate was examined at both 37 and 30°C, as
shown in Fig. 2C and D. At both temperatures, the wild-type
strain operated in region 2, which is a partially anaerobic
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growth region characterized by acetate secretion. Cultures
were evolved and tested at both 37°C (strain P1) and 30°C
(strain P2); P1 was evolved for 60 days or approximately 1,200
generations, and P2 was evolved for 75 days or approximately
1,000 generations. P1 showed a 69% increase in GR from 0.42
to 0.70 h�1, and P2 showed a 115% increase in GR from 0.23
to 0.49 h�1. The P1 strain showed an increase in GR by in-
creasing the SUR without a significant increase in the OUR
(possibly due to oxygen limitation) and thus moved away from
the LO to a region of faster growth. The P2 strain evolved
parallel to the LO by increasing both OUR and SUR for the
first 40 days of evolution, moving from fully aerobic growth
with the maximal biomass yield to partially anaerobic growth
with a higher GR. After day 40, the P2 strain drifted away from
the LO into region 2.

(iii) �-Ketoglutarate. When E. coli K-12 wild-type strain
MG1655 was tested on 2 g of �-ketoglutarate per liter, it
operated close to the predicted LO when it was tested at both
37°C (strain A1) and 30°C (strain A2), as shown in Fig. 2E and
F. The evolved strains of E. coli were characterized phenotyp-
ically after every 10 days of evolution to monitor changes in the
strains, and each strain was allowed to evolve for a total of 50
days, or approximately 625 generations for A1 and 440 gener-
ations for A2. The GR changed from 0.21 to 0.31 h�1 at 30°C
(48% increase) and from 0.32 to 0.45 h�1 at 37°C (41% in-
crease), and there were small increases in OUR but large
increases in SUR. Adaptive evolution on �-ketoglutarate re-
sulted in changes that moved the cells away from the predicted
LO to a region of faster growth with partially anaerobic me-
tabolism, similar to adaptive evolution on pyruvate.

Computations based on in silico model. At the end of adap-
tive evolution, the end point phenotype of each strain was
compared to computationally derived optimal phenotypes.
Two different calculations were made for each strain, optimal
yield and optimal growth.

(i) Optimal yield. The optimal yield for each strain was
calculated by using the experimentally measured OUR as a set
parameter in the in silico model, thus allowing the model to
calculate the predicted optimal GR and corresponding SUR,
as illustrated in Fig. 1C. The results are shown in Table 1. For
the two strains whose end points operated on the LO, strains
L2 and L3, there is good agreement between the experimental

values and the computationally determined optimal GR and
SUR. All of the other strains (L1, P1, P2, A1, and A2) showed
large deviations between the experimental results and the cal-
culated optimal phenotype where the computed GR and SUR
were lower than the experimental results.

(ii) Optimal growth. The theoretical optimal growth for the
end point of each strain was calculated for each evolved strain
by setting both the SUR and OUR to the experimentally mea-
sured values and allowing the model to calculate the GR (Ta-
ble 1). There was good agreement (the differences were within
5%) between the computational and experimental results for
strains L2, L3, A1, and A2. Strain L1 experimentally grew
approximately 20% faster than the computational prediction
(Fig. 2A, inset). Both of the strains evolved on pyruvate, P1
and P2, experimentally grew 35% faster than the computa-
tional prediction, suggesting that the in silico model is incom-
plete in its representation of pyruvate metabolism.

Growth on alternative substrates. To further assess the
characteristics of each of the evolved strains, the GR of each
strain was measured on 10 carbon substrates as a function of
evolutionary time. The results were expressed as a ratio of the
measured GR of the evolved strain to the measured GR of the
wild-type strain for each substrate, where unity indicated that
the GRs of the evolved strain and the wild-type strain were
identical. The graphic results shown in Fig. 3 are limited to
tests on 5 of the 10 substrates tested for clarity, and the inset
summarizes all of the results obtained. The GRs obtained by
using the Bioscreen C system were consistently lower than the
GRs measured in stirred 250-ml batch cultures due to the
partially anaerobic growth conditions of the Bioscreen C sys-
tem.

(i) Lactate. The strains evolved on lactate at different tem-
peratures showed markedly different growth characteristics
when they were tested on alternative substrates, as shown in
Fig. 3A to C. The L1 strain evolved at 37°C exhibited most of
the GR changes within the first 10 days of evolution. Growth
on citrate was decreased at the end point of evolution, and the
growth on glucose was no different from that of the wild-type
strain. Growth on all other substrates was increased, with
growth on pyruvate showing almost a 100% increase in the GR
compared with the growth of the wild-type strain.

The two strains evolved at 30°C, L2 and L3, produced inter-
esting results. There were noticeable differences in the GR
patterns over the course of evolution between these two
strains, with large differences occurring on day 20 of evolution,
when the two strains were most different phenotypically (Fig.
2A and B). Strain L2 showed a large increase in the GR on
acetate and decreases in growth on glycerol and ribose, where-
as strain L3 showed no changes for growth on acetate or
glycerol and an increase for growth on ribose. By the end of
evolution, the two strains showed almost identical GRs on all
alternative substrates except acetate. Strain L2 exhibited an
ability to grow much faster on acetate (138% increase com-
pared with the wild type) than the L3 strain (13% increase
compared with the wild type).

(ii) Pyruvate. The two strains evolved on pyruvate showed
different growth characteristics when they were grown on al-
ternative substrates, as shown in Fig. 3D and E. The P1 strain
experienced most of its GR changes within the first 10 days of
evolution for growth on alternative substrates. At the end point

TABLE 1. Comparison between the phenotype for the
experimental end point of evolution and the computationally

calculated optimal phenotype for each evolved straina

Strain

Experimental end point Calculated
optimal yield Calculated

optimal GR
(h�1)GR

(h�1)

SUR
(mmol/g

[dry wt]/h)

OUR
(mmol/g

[dry wt]/h)

GR
(h�1)

SUR
(mmol/g

[dry wt]/h)

L1 0.72 17.30 � 0.24 20.60 � 0.74 0.57 15.17 0.60
L2 0.56 14.88 � 0.10 19.88 � 0.04 0.55 14.60 0.55
L3 0.53 14.50 � 0.40 20.25 � 0.15 0.56 14.90 0.55
P1 0.70 21.80 � 0.50 16.20 � 0.40 0.44 14.19 0.52
P2 0.49 14.70 � 0.21 12.50 � 0.50 0.32 10.64 0.36
A1 0.45 11.15 � 0.15 12.00 � 0.10 0.36 6.88 0.43
A2 0.31 8.32 � 0.07 8.71 � 0.03 0.24 4.73 0.30

a The optimal yield was calculated by setting the OUR. The optimal growth
was calculated by setting both the OUR and SUR. The experimental errors are
the standard deviations for tests of replicate cultures.
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the P1 strain showed a decreased GR on glucose and malate,
a loss of growth on citrate, and no change for growth on ribose
and succinate. Growth on acetate, �-ketoglutarate, glycerol,
and lactate was improved by evolution on pyruvate, with the
GR on lactate increasing more than 100%. The P2 strain
showed GR changes on alternative substrates throughout all 75
days of evolution. Growth on citrate and �-ketoglutarate was
decreased for the end point of the P2 strain. Growth on all of
the other substrates increased, with the GRs on glycerol and
ribose increasing more than 150% compared with the wild-type
GR.

(iii) �-Ketoglutarate. Differences between the two strains
evolved on �-ketoglutarate were demonstrated by determining
GRs on alternative substrates, as shown in Fig. 3F and G. Most
GR changes on the alternative substrates for the A1 stain
occurred within the first 10 days of evolution. At the end point
strain A1 showed a decreased ability to grow on citrate and no
change in growth on glucose compared with the wild-type
strain. The GRs on malate, ribose, succinate, pyruvate, glyc-
erol, lactate, and acetate all increased compared with the GRs
of the wild-type strain, with growth on glycerol, lactate, and
acetate improving more than 50%. In contrast to the A1 strain,
the A2 strain exhibited GR changes on alternative substrates
throughout the course of evolution. At the end point strain A2
showed a decreased GR on citrate, ribose, and pyruvate.
Growth on all other substrates increased, with the largest GR
increase occurring on glycerol (more than a 200% increase in
the GR compared with the GR of the wild-type strain).

Taken together, the GRs of each evolved strain on alterna-
tive carbon substrates showed several general trends. Evolu-
tion at 37°C stimulated most changes to occur within the first
10 days of evolution, whereas changes occurred throughout
evolution for cultures grown at 30°C. Larger increases in GRs
were observed for cultures evolved at 30°C than for cultures
evolved at 37°C, and evolution at 30°C always induced some
change in growth on alternative substrates (either an increase
or a decrease in the GR), but evolution at 37°C showed no
change in GRs on some of the alternative substrates (glucose,
ribose, and succinate). In addition, it was observed that growth
on citrate always decreased regardless of what primary sub-
strate E. coli was evolved on, and the increases in the GRs on
glycerol and lactate consistently were among the largest in-
creases in GRs for all of the evolved strains.

DISCUSSION

In this study, a genome-scale in silico model of E. coli was
used to predict the phenotype at the end point of adaptive
evolution on lactate, pyruvate, and �-ketoglutarate, and seven
strains of E. coli were evolved and characterized phenotypi-
cally. We found that (i) during laboratory adaptive evolution in
serially passed batch cultures cells evolve to a region of the
highest GR, (ii) the outcome of laboratory adaptive evolution
can be predicted and described by using a genome-scale in
silico model, and (iii) parallel or opposing physiological growth
objectives can be identified by using assessment of the GRs on
alternative carbon sources.

The finding that E. coli evolves to a region of greater growth
(away from the LO) was based upon the results obtained for all
seven evolved strains. Deviation from the LO could have oc-

curred because of inadequacies in the model or because of the
selection pressure imposed by the experimental system. While
the three strains evolved on lactate moved towards the pre-
dicted LO (with the L1 strain eventually moving off the LO),
the strains evolved on �-ketoglutarate and pyruvate evolved
away from the LO. For five of the seven evolved strains (L1,
A1, A2, P1, and P2), the observed experimental growth was
faster than the predicted growth based on the optimal biomass
yield. Thus, the cells consumed the carbon substrate faster
than it could be fully aerobically metabolized and secreted the
excess carbon as by-products that could potentially be recon-
sumed. This phenomenon was observed experimentally during
batch culture testing with the secretion and reconsumption of
acetate (data not shown) and has been observed previously (18,
35).

The computational results showed that in all cases except
strains L2 and L3, the experimental SUR was higher than the
calculated SUR that resulted in the maximum biomass yield
(Table 1). Thus, strains L1, P1, P2, A1, and A2 overconsumed
substrate, resulting in an excess of carbon which had to be
secreted as by-products. The secretion of by-products was cor-
rectly predicted computationally for the uptake rates measured
for these five strains. Taken together, these results indicate
that adaptive evolution does not always drive cells to operate
on the LO, which represents perfect aerobic metabolism, and
that in a batch culture the imposed selection pressure drives
cells to the highest GR.

It should be noted that for a subset of growth conditions the
region of fastest growth coincides with the LO that defines the
maximum biomass yield. In such cases (for example, growth on
acetate [8]), GR and biomass yield are simultaneously opti-
mized through adaptive evolution.

The parallel strains evolved on lactate, L2 and L3, produced
interesting results due to their convergence toward a common
end point of evolution. Strains L2 and L3 were evolved side by
side from the same parental strain; however, they took vastly
divergent evolutionary paths that began and ended at similar
points. Repeated phenotype testing of the two strains along
with the by-product secretion patterns and growth character-
istics on alternative substrates verified the divergence of the
two strains during evolution and the convergence at the end of
evolution. Together with the parallel evolution completed on
glycerol (13), these results suggest that there are global opti-
mum phenotypes that can be attained through adaptive evo-
lution independent of the starting point or the path taken.
There may be multiple ways of reaching the same equivalent
end point of evolution.

While the two strains evolved on lactate (L2 and L3) exhib-
ited almost identical growth phenotypes, they clearly were not
identical in their underlying metabolic functionalities, as
shown in their by-product secretion patterns and growth char-
acteristics on alternative substrates. Cells may be able to utilize
their metabolic networks differently to achieve the same exter-
nal phenotype. The differences between these two strains be-
came apparent when they were grown on acetate minimal
medium, on which L2 grew more than twice as fast as L3. Thus,
adaptive evolution may create silent phenotypes (3, 22, 30)
within a strain, some of which can be probed by characteriza-
tion of growth on alternative substrates.

Adaptive evolution led to some changes in growth on alter-
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native substrates that were common to all strains. For all of the
evolved strains obtained, a decrease in growth on citrate and
significant increases in growth on glycerol and lactate were
observed. These results suggest that different cellular growth
objectives may inhibit or facilitate each other such that growth
on one substrate leads to either an increase or a decrease in
functionality on another substrate. As many of the changes
were observed to occur early in each strain, the changes may
have been associated with the initial adaptation to the growth
environment, which could later be fixed into the genome
through long-term evolution and mutation. Adaptive evolution
may lead to an overall increase in functionality of the organism
and not just metabolic refinement for the single evolution
condition.

We have started to identify mutations that occur during
adaptive evolution (23). Once completed, this information not
only should allow us to gain a better understanding of the
evolutionary process but also should allow us to characterize
the genotype-phenotype relationship in the evolved strains.

The development of a genome-scale in silico model of E. coli
and testing of this model by using adaptive evolution suggest
that E. coli evolves towards a computationally predicted opti-
mal growth phenotype on acetate, succinate, glucose, malate,
and glycerol (8, 13). Despite the success of the genome-scale in
silico model to predict cellular phenotypes in these cases, the
full applicability of this model to diverse biological conditions
need to be evaluated to determine what limitations there are to
its accuracy and what improvements can be made to the cur-
rent model. One area of refinement that needs to be made in
the model was revealed by the calculations for optimal growth
for the two strains evolved on pyruvate, P1 and P2, as shown in
Table 1. In both cases, the calculated GR was 35% lower than
the experimental value. To investigate this discrepancy, growth
on pyruvate was computationally compared to growth on lac-
tate since these two substrates are separated by only one met-
abolic reaction (mediated by lactate dehydrogenase), and there
was good agreement between the computational and experi-
mental results for lactate. By computationally removing reac-
tions and running simulations, we found that the erroneous
calculations for growth on pyruvate were not attributable to
the lactate dehydrogenase reaction or energetic considerations
connected to NADH. Thus, there may be metabolic processes
related to pyruvate metabolism that are not accounted for in
the in silico model. This model can be used as a basis for
probing metabolic questions and systematically reconciling dis-
crepancies (6, 20, 25).

With a genome-scale model and suitable experimental meth-
ods in place, the research described here may be one of the
first steps in the growing field of combining computational and
experimental methods. Thus, we may be at the doorstep of
using computational models to prospectively design strains and
experiments; this could help reduce the amount of experimen-
tal work needed to achieve a goal, but we must also be careful
to fully evaluate the limitations of any computational model
and its applicability to the complexities of real-life biology.
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